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LETTER TO THE EDITOR 

Triangular versus square lattice gas automata for the analysis 
of two-dimensional vortex fields 
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00147 Rome, Italy 

Received 22 September 1987 

Abstract. The consequences of the lack of isotropy of the momentum flux tensor of the 
Hardy-Pomeau-De Pazzis (HPP) fluid are discussed. It is shown that this lack of isotropy 
is tantamount to introducing a force which is incompatible with a correct evolution of 
two-dimensional vortex configurations. In addition, a qualitative discussion is presented 
on the physical reasons why this problem can be cured by moving to the six-link lattice 
introduced by Frisch, Hasslacher and Pomeau (FHP).  

Lattice gas models obeying cellular automata (CA) rules constitute a subject of growing 
interest for the simulation of complex hydrodynamic phenomena. In fact, with suitable 
restrictions on the crystallographic symmetries of the lattice, and by taking the appropri- 
ate spatial averages, various fluid dynamical equations are obtained which describe 
the macroscopic behaviour of the lattice gas as a continuum system. Since the cellular 
automata rules are intrinsically discrete and only involve logical operations, a new 
and fairly different simulation strategy is therefore offered. The simplest lattice gas 
model, currently referred to as HPP (Hardy-Pomeau-De Pazzis) [ 13, involves a regular 
square lattice, holding up to four particles per site, each endowed with a unit mass 
and unit speed along one of the four directions defined on the lattice. The dynamics 
of the HPP automaton is invariant under all the transformations which conserve the 
square lattice, namely mirror symmetries with respect to a lattice line, discrete transla- 
tions and rotations of 4 ~ .  Unfortunately, this latter symmetry is not sufficient to ensure 
the isotropy of the resulting macroscopic equations. As first shown by Frisch er a1 [2], 
this isotropy can be recovered by replacing the HPP square lattice with a triangular 
lattice in which each site is connected to its neighbours through six links angularly 
spaced by $r. For this reason, all the hydrodynamical simulations in this domain are 
now currently performed with hexagonal lattices, usually referred to as F H P  (Frisch- 
Hasslacher-Pomeau) model. However, as far as we know, no specific analysis of the 
practical consequences of this anisotropy on the evolution of twu-dimensional vortex 
configurations has ever been presented, so that one may wonder whether at least the 
qualitative aspects of this evolution can be studied with the HPP automaton in spite 
of its lack of isotropy. To this purpose, we reformulate the HPP momentum equation 
as the correct Euler equation plus a forcing term which embodies the effects of the 
lack of isotropy. We find that this forcing term indeed rapidly drives the fluid close 
to an equilibrium situation which is essentially a direct product of two separate 
one-dimensional equilibria. This is achieved via a sort of ballastic instability of the 
vortices, which are first turned into quasisquare structures and subsequently die out 
because of the inability of pressure gradients to prevent kinematic losses on the edges, 
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As is well known [3], the fluid dynamic picture of a fluid may be conceived as the 
gluing of local thermodynamic equilibria characterised by slowly varying parameters, 
typically the fluid density p ( x , ,  t )  and speed u , ( x k ,  t ) .  These two quantities fulfil 
macroscopic equations which, in the inviscid limit, can be cast in conservative form 
as follows: 

(1) 

( 2 )  

alp + a,pu, = o 
a@, + d k P , h  = 0 

where a, is the temporal derivative, a,,  i = 1,2, the spatial gradient and  P,k is the 
momentum flux tensor. The first of these two equations represents mass conservation 
(the continuity equation) while the second one is the equation of motion of the fluid, 
i.e. the Euler equation. In a real fluid the momentum flux tensor takes the form 

P ~ k  = P u i u k  +P6ik (3) 

where p is the scalar pressure and  Slk is the usual Kronecker delta function. It is not 
difficult to show that (3)  represents the most general form of an  isotropic tensor in 
dimension D = 2 .  

Note that in the frame moving with the fluid, the above expression reduces to a 
diagonal tensor, so that the familiar Pascal law is recovered; in fact the quadratic 
component u,uI, stems from the translational symmetry related to the principle of 
Galilean invariance. In a lattice gas, such a symmetry is broken and this results in the 
appearance of a density-dependent extra factor G ( p )  in front of the quadratic term. 

Following the general theory exposed in [4], it is easy to verify that in the H P P  

lattice gas the momentum flux tensor is 

PI;Ipp= p6,k + p G ( p  ) (  u 2  - u ' ) u , ~  (4) 

where U and U stand for the x and y components of the velocity vector U,, is the 
Pauli matrix u , h  = 6&(-1)"+') and G is the coefficient arising from the lack of transla- 
tional symmetry. From this expression we see that the 'pressure' component p6,h is 
the same as in a real fluid, while the quadratic part is not. This means tht the lack of 
isotropy of the H P P  tensor leaves the linear modes unaffected (such as the sound waves 
observed in the early cellular automata simulations [ 5 ] )  but is likely to significantly 
alter the non-linear fluid regime. 

To give a quantitative insight in this direction, we find i t  convenient to rewrite the 
H P P  tensor as a sum of the lattice Navier-Stokes tensor, i.e. (3) with the quadratic 
term premultiplied by a factor G, plus a 'spurious' tensor r h  which is meant to account 
for all the physical effects related to the lack of isotropy of the H P P  model. By comparing 
equation (3), modified as mentioned above, and equation (4), one obtains 

T,k = -pGu',u'h ( 5 )  

where the tilde denotes the interchange between x and y directions so that 6, = u2=  U 
and ir = U ,  = U. After this, the motion equation for the momentum can be written as 

(6) 

where d, = a, + Gukak is the substantial derivative taken along the fluid path and f; the 
spurious force associated with the lack of isotropy (hereafter called the H P P  force). 
This force can be written explicitly as follows: 

d,pu, + a l p  = akTh, = A  

f; = pGsJ, ( 7 )  
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where s = U? + U, is the strain term describing the deformation of a fluid element under 
tangential stresses. 

Let us now consider the following isotropic vortex configuration: 

U = -yR( r) u = xR( r)  ( r2 = x2+y2)  (8) 

where R( r) is a suitable shape function describing the spatial structure of the vortex. 
For this configuration, we immediately obtain 

s = ( y2 - xz) dR/dr.  ( 9 )  

Discarding the possibility that dR/dr  = 0 (we assume R (  r)  a monotonically decreasing 
function of r ) ,  we see that the condition s = 0 can only be met along the bisectrices 
of the plane, where both the components of the H P P  force vanish. From the above 
expressions, we also see that along the coordinate axes the force is aligned with the 
axes themselves and points towards the origin, i.e. the centre of the vortex. 

Complete information on the topology of the H P P  force can be obtained by 
examining its flow lines, defined by the requirement f x  dl  = 0, i.e. dy/dx = f i . / f x .  This 
yields the following path equation: 

yx = constant (10) 

which shows that the spurious force is distributed along hyperbolic paths, symmetric 
about the bisetrices of the x,y plane, with an intensity which is maximum along the 
coordinate axes and zero on the bisetrices. As already noticed, along the coordinate 
axes the force is centripetal, i.e. it points towards the origin and tends therefore to 
compress the vortex. I t  is also useful to identify those paths along which the kinetic 
energy of the fluid is left unaffected by the spurious force. For this, the requirement 
is f. df = 0, which is dy ldx  = -fy/f,. This yields 

(11) 
2 2  y - x  =constant. 

Hence, in order for its kinetic energy to be unaffected by the presence of the H P P  force 
generated by the circular vortex, the fluid should move along hyperbolic paths: 
manifestly we have run against a topological conflict! 

To clarify what we mean by ‘topological conflict’, let us repeat the same procedure 
with the ‘Euler’ force f: - p U k a k U , .  One sees that this term results in a purely radial 
force which adds up to the centrifugal force along the outward normal with no 
component along the tangential direction, as it must be according to the isotropy 
requirements. Consequently, the vortex is a force-free path, whose equilibrium is 
ensured by an inward radial pressure gradient balancing both the Euler and the 
centrifugal forces. In  other words, the vortices are equilibrium structures in that they 
coincide with coordinate lines of the geometry induced by the Euler force. These 
coordinate lines ( r  = constant) are associated with the conservation of the kinetic energy 
K = i p ( u 2 +  U’), which can play the role of an independent coordinate perfectly 
equivalent to the radial one. With the same arguments, we see that the natural system 
induced by the H P P  force is qualitatively different: it is in fact a hyperbolic system in 
which the force-free paths are labelled by the hyperbolic form K - = :p(  U , U ~ U , )  = 
fp( u2 - U’), a sort of ‘skew’ kinetic energy. Along a vortex path, K is conserved whereas 
K -  undergoes periodic oscillations. 
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I t  is now instructive to rewrite ( 2 )  for the unknowns K and K -  instead of U and 
U. By applying the scalar and antiscalar productt of (2) with the velocity vector U,, 
we obtain 

d,K + u,a,p = 2pGuvs (12) 

d , K - +  u,u,,a,p = 0. (13) 

From these equations we see that K -  indeed evolves as in a real fluid, as it must d o  
since the antiscalar product with the fluid velocity annihilates the H P P  force. On the 
contrary, the kinetic energy is affected by the spurious term on the R H S  of (12). The 
requirement that this spurious term vanishes introduces a sort of macroscopic ‘exclusion 
principle’ which forbids the simultaneous presence at the same spatial location of two 
non-vanishing velocity components. 

Thus, of all the possible two-dimensional configurations, this principle singles out 
those which can be decomposed into a direct product of two decoupled one-dimensional 
structures along the coordinate axes. If we confine our attention to these configurations, 
it is clear that the closest one to a circular vortex is a square vortex whose sides are 
aligned with the coordinate axes. Indeed, by remembering the topology of the H P P  

force acting on a circle, we see that it tends to transform the circle into a square. Let 
us therefore assume the following velocity field: 

where the notation H stands for the Heavyside step function. Elementary calculations 
show that the H P P  force is always orthogonal to the vortex path and  consequently it 
does not affect its kinetic energy. The Euler force reduces to its one-dimensional 
components uu, and vv,, which give rise to singular Dirac delta stretching contributions 
on the corners of the vortex where the fluid velocity suffers a discontinuity. Con- 
sequently, in order for the vortex configuration to be maintained against the ballistic 
losses induced by the Euler force on the corners, a balancing singularity must also 
develop in the pressure field. Owing to this singularity, around the corners the inviscid 
approximation fails completely and  higher-order spatial derivatives must be accounted 
for, no matter how small the fluid viscosity is. 

Therefore, we have performed a series of numerical simulations on an  IBM 3090 
with vector facility in order to ascertain whether the diffusion effects brought about 
by higher-order derivatives can play some stabilising role. In other words, this means 
investigating whether the smoothing effects of the collisions can somehow damp out 
the shortest wavelengths produced by !he Euler term, thereby removing the unphysical 
discontinuities generated by the H P P  term. 

The outcome of these simulations was definitely negative and  confirmed the domin- 
ance of the ‘ballistic instability’ mentioned above. In other words, what one observes 
is that the circular vortices are first turned into square structures which subsequently 
rapidly deplete under the expelling effect of the Euler force. This ballistic instability 
must be regarded as the most genuine (and catastrophic) manifestation of the lack of 
isotropy: it provides the system with an eminently quick and  efficient route towards a 
factorised x,y equilibrium incompatible with the existence of a circular vortex. 

Before concluding, a few comments on the reasons why the problems of the H P P  

automaton can be cured by adopting a six-link underlying lattice are in order. 

t The antiscalar product is just a scalar product in the metric defined by the matrix o, i.e. A* B = A,cr,,B, = 
A I B, - A2 B, . 
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As previously shown, the main failure of the HPP fluid is its inability to ensure a 
proper energy transfer between the x and y axes, a mechanism which is essential for 
the correct evolution of any genuinely two-dimensional fluid configuration. This 
inability can be traced back to the properties of the free-streaming and collision 
operators which govern the microevolution of the lattice gas. Therefore, let us briefly 
review the basic features of the HPP automaton. On each grid site ( i ,  j) one puts N ,  
particles (0 s Nv d 4), each endowed with a unit mass and speed, so that the state on 
this site can be represented by a quadruplet ( N I ,  N 2 ,  N 3 ,  N 4 ) i j  where N’, s = 1, .  . . ,4,  
can take only the values zero or one according to whether the site holds a particle 
pointing in the direction s or not. Thus, the notation (1 11 1) denotes a fully occupied 
site, while (0000) indicates the total absence of particles (hole). Conventionally, we 
assume s = 1,2 corresponding to increasing values of the x, y coordinates, respectively, 
while s = 3 , 4  are associated with the propagation in the opposite directions -x, -y. 

Starting from the Boolean field N ; ,  at each site one can define a local particle 
number (occupation number) and momentum given by 

where t, are four unit vectors pointing along the dkections defined on the grid. 
The evolution rule is as follows: particles are marched one step ahead in the 

direction of their speed (free propagation) and collide whenever two particles with 
opposite speeds meet on the same site (head-on collisions). The effect of the collision 
is to turn the particles’ speed at right angles, provided that the new directions are 
unoccupied: otherwise nothing happens. 

It is easy to verify that the only transitions allowed by the conservation laws (number 
ar,d linear momentum) and the exclusion principle (no more than one particle at each 
site for a given direction) are those that transform (1010) into (0101) and vice versa. 

,These simple prescriptions suffice to construct the free-streaming and collision 
operators acting upon the Boolean field NI,. I t  is easy to verify that the microdynamics 
induced by these operators leads to the existence of L, + L, invariants of motion, L,  
and L,, being the number of gridpoints along x and y.  These invariants correspond 
to the longitudinal gridline momenta (LGM),  i.e. the total momentum carried by each 
gridline along the direction defined by the gridline itself. In the square lattice the 
gridlines are aligned with the macroscopic axes, so that one simply has 

The invariance of these quantities can be easily verified with no need of formulae. In 
fact, in the free-streaming phase, particles only move either along a row (column) or 
perpendicularly to it: obviously in either case the total momentum along the row 
(column) is left unchanged. This is equally true for the collision step since only head-on 
collisions between self-balanced doublets (J,, = 0) are allowed. Note that, since the 
LGM are essentially one-dimensional invariants, their existence provides the ultimate 
reason for the inability of the HPP automaton to support truly two-dimensional 
macroconfigurations. 

Let us now see what happens in a six-link lattice. In such a lattice we have six 
propagation directions (although only two of them are linearly independent since the 
lattice is two dimensional) and a corresponding set of unit vectors L?,, s = 1, .  . . , 6  (see 
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figure 1) .  Assuming a macroscopic system of coordinates oriented along c*, and E* ,  
one has 

E,  = ( 1 , O )  C2 = ( 0 , l )  2, = ( -2  cos a, sin a )  ?,+3 = -cy s = 1, . . . , 3  (17) 

where a is the angular spacing between the links. Owing to the existence of a third 
direction of propagation, we have now three possibilities (by symmetry, we restrict 
ourselves to the case of propagation towards non-decreasing values of j ) :  

( i , j ) - + ( i +  1 , j )  

( i, j )  + ( i, j + 1 ) 

( i, j )  -+ ( i - 1, j + 1 ) 

where the numbering of the grid lines follows the scheme depicted in figure 2 .  
The first two cases are the strict analogue of the HPP grid in non-orthogonal 

coordinates, while the third one is peculiar to the six-link grid. It is easy to verify that 
since the particles undergoing the third type of hopping d o  carry a net momentum 
along the gridline they quit (both the contravariant components of Z3 are different 
from zero), they give rise to an effective exchange of quanta of momentum between 
the gridlines which destroys the G L M  invariance previously discussed?. 

The existence of a third link introduces a considerable amount of extra freedom 
also in the collision phase. In particular, in addition to two-body head-on collisions 
(direct analogue of HPP), it is now possible to account for three-body encounters which 
transform (010101) into (101010) and vice versa. While it is still true that these 
configurations carry no  local momentum, they are nonetheless effective in transferring 
momentum between the lattice gridlines. Again, this contributes to break the grid 
invariants. 

5 2 3  s = 2  
* * 

* * 
* * 

* *  
s : / + *  * * * * G *  * * * * * s = l  

* *  
* * 

* * 
* * 

5 - 5  5 = 6  

Figure 1. The six links out of a grid point in the F H P  lattice 

t We refer here to the direct generalisation of the quantities defined by (16). More specifically J‘ and J ’  
will be replaced by J‘ ,  J ”  and J ’ *  where y l  and y 2  are the two vertical oblique directions s = 2 ,3 .  So, for 
example, we have J,’ I = Z:: (N: ,  - N t ) .  
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Thus in a six-link lattice the LGM cease to be invariant of motion, thereby releasing 
the degrees of freedom needed to support truly two-dimensional macroscopic configur- 
ations. This is the basic physical reason behind the mathematical fact that the momen- 
tum flux tensor computed on a six-link lattice displays the correct quadratic component 
u p k ,  thus allowing a realistic description of non-linear flow regimes which are inaccess- 
ible on a four-link lattice. 

The fact that the HPP fluid relaxes essentially as a pair of decoupled I D  systems 
had already been pointed out by Hardy et ai [ 13, although in the work of these authors 
no particular reference to vortex fields as initial conditions was made. In the present 
work, we have found that the one-dimensional nature of the relaxation becomes 
manifest from the very early stage of the evolution, thereby preventing even a qualitative 
study of the vortex dynamics. 

We have shown that the anisotropy of the momentum flux tensor of the Hardy- 
Pomeau-De Pazzis fluid is equivalent to introducing a spurious force which inhibits 
the correct evolution of two-dimensional vortex structures. In addition, we have 
presented a few simple arguments which highlight the basic physical reasons why this 
problem can be circumvented by moving to the six-link lattice introduced by Frisch 
et ai. 

I am indebted to Drs P Santangelo, P Carnevali, R Benzi and  M Briscolini for many 
valuable discussions. 
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